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A parametric crossover model is adapted to represent the thermodynamic
properties of pure D2O in the extended critical region. The crossover equation
of state for D2O incorporates scaling laws asymptotically close to the critical
point and is transformed into a regular classical expansion far from the critical
point. An isomorphic generalization of the law of corresponding states is applied
to the prediction of thermodynamic properties and the phase behavior of
D2O + H2O mixtures over a wide region around the locus of vapor-liquid criti-
cal points. A comparison is made with experimental data for pure D2O and for
the D2O + H2O mixture. The equation of state yields a good representation of
thermodynamic property data in the range of temperatures 0.8Tc(x)< T <
1 . 5 T C ( X ) and densities 0.35Pc(x) < p < 1.65pc(X).

KEY WORDS: binary mixtures; critical region; D2O; equation of state; H2O;
phase behavior; thermodynamic properties.

1. INTRODUCTION

In addition to being of practical interest (primarily in the nuclear
industries), the thermodynamic properties of heavy water and its mixtures
with ordinary water are interesting from a modeling point of view. Because



where a12 and a04 are system-dependent coefficients. For one-component
fluids the dimensionless difference of the density p from the critical density
pc can be chosen as the order parameter, Atj = Ap = p/pc — 1. The dimen-
sionless chemical potential Afl = (d(AA)/dAp)T, conjugate to the order
parameter Ap, plays the role of the ordering field. In the Landau theory,
the equilibrium value of the order parameter on the coexistence curve,

of the similarity of the molecules, the mixture properties are very nearly
ideal. Reproducing the small nonidealities is a challenge for modelers. In
addition, the presence of the isotope exchange equilibrium involving HDO
adds an extra complication, but does so in a way that has less impact on
the phase diagram than is observed in most reacting systems.

In this work, we focus on the region near the critical locus of the
mixture by applying a previously developed parametric crossover model.
We begin with an exposition of the renormalized Landau expansion that
has been used in some crossover models and show its connections with the
parametric model used here. We then apply the parametric model to pure
D2O and compare the results to PVT, phase boundary, and caloric data.
Finally, the model is applied to the binary mixture and compared with the
limited data that exist in the applicable range of the model.

2. CROSSOVER FREE ENERGY FOR PURE FLUIDS

2.1. Renormalized Landau Expansion

The classical approach to the study of critical phenomena was
developed by Landau [1]. The Landau, or mean-field, theory is based on
the introduction of an order parameter At) which is zero in the more sym-
metric (disordered) phase and nonzero in the less symmetric (ordered)
phase [1, 2]. The free energy of the system in the mean-field theory is
written in the form
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where At] is the order parameter, r = T/TC — 1 is the dimensionless dif-
ference of the temperature T from the critical temperature Tc, A A is the
critical part of the dimensionless Helmholtz free energy density A = pA/Pc,
while fl0(T) and A0(T) are analytic functions of temperature. In the critical
region, |r| << 1 and |Ar| << 1, and the critical part of the free energy, AA,
is represented in the Landau theory by a Taylor expansion in powers of the
order parameter [1 ],



where K2 = [ d A A I d ( A r i 2 Y ( y - 2 b ) / 2 A 1 ] r , and the high-wavenumber cutoff A
and the coefficient u are system-dependent parameters. In the spherical
model, the critical exponent a> = 1 and the mean-field limit, at which the
crossover function F= 1, is not achieved asymptotically as ( a / K ) - > 0 but,
rather, is reached abruptly as ( A / k ) - 1 . Therefore, the spherical-model
crossover function (6) cannot be used in the renormalized Landau expan-
sion (4) for thermodynamic calculations in fluids and fluid mixtures.

In these equations y = 1.24, /? = 0.325, a = 2 - y - 2/J = 0.110, and A, = 0.51
are the current best estimates of the nonclassical critical exponents [7, 8 ].
In the mean-field regime at Gi« |r| « 1, the crossover function Y -> 1 and
Eq. (4) is transformed into the Landau expression [Eq. (2)].

Unfortunately, the solution of the RG equations, except in special
cases, cannot be obtained rigorously without additional approximations.
Nicoll et al. [4, 6] obtained an exact solution of these equation for the
spherical model

where Y denotes a crossover function to be specified below, while the kernel
term Jf (r2), which provides the correct scaling behavior of the isochoric
specific heat asymptotically close to the critical point, has the form,

The Landau theory is valid only in the temperature region Gi«
i « 1, where the long-range fluctuations in the order parameter are negli-

gible [1,2]. Here Gicc(I/l0)
6 is the Ginzburg number, 7is an average distance

between particles, and I0 is an effective average radius of the interaction
between molecules. The intensity of the fluctuations diverges at the critical
point, and at temperatures |T|«Gi, the fluctuations as given by renor-
malization-group (RG) theory should be considered. According to RG
theory, the fluctuations close to the critical point renormalize Eq. (2) into
[3-6]
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Apcxs, is proportional to |r|1/2 and the susceptibility x = (dAt)/dAjLi)r,
diverges as T~' at p = pc, while the specific heat CK= — ( d 2 A / d r 2 ) a n

remains finite at the critical point [1]. Thus, for the Landau (or mean-
field) theory, the critical exponents are



where d1 is the rectilinear diameter amplitude. This is a so-called "trivial"
account of the asymmetry [1, 2], which is by itself not sufficient to describe
the actual thermodynamic behavior of real fluids because of the long-range
fluctuations in the order parameter observed in the critical region. The
vapor-liquid asymmetry observed in fluids and fluid mixtures [13, 17] can
be taken into account in fluctuation theory by a "mixing" of the chemical
potential and the temperature-like variables [2, 18, 19], resulting in a
singular diameter oc \T— T c | 1 - a . Another way is the addition of a new
correction term oc |T— T C | S + A5 for the order parameter At] in the two-
phase region, which arises from an additional term oc Arf in the Landau
expansion [Eq. (2)] and, as a consequence, in the Landau-Ginzburg-
Wilson effective Hamiltonian of the system [3, 20].

As more terms are taken into account in the renormalized Landau
expansion [Eq. (4)], a wider range of temperature and density around the
critical point can be described with this crossover model. Incorporation of

where g0 = 0.0314 is a universal constant and c, is a system-dependent
parameter [12].

Equations (2)-(7) correspond to an Ising-type system, symmetric with
respect to the transformation Ap —> — Ap, A/u —> — A/u. Fluids exhibit this
symmetry only in an extremely small range of temperatures and densities
around the critical point [13-16]. The first asymmetric term of order
T(Ap)3, which destroys the symmetry of Eq. (2), can be effectively taken
into account by a redefinition of the order parameter

where u> = A 1 / v = 0.8095 is a universal critical exponent for three-dimen-
sional Ising-like systems. The Ginzburg number in this approach is

In order to apply the RG result to real fluids, Chen and co-workers
[9, 10] replaced the parameter (A/x) in Eq. (6) by [1 + ( f / k ) 2 ] 1 / 2 . From
different approximations for the critical exponents as functions of the
renormalized coupling in the RG equations, five approximations for the
crossover function Y were obtained [11]. The simplest phenomenologically
repaired crossover function, referred to as crossover model I by Tang et al.
[11] , is
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(where the parameter g cc G i - 1 , while q0 and A0 are universal constants,
initially taken to be unity [24]) is a simple Fade approximant of the cross-
over free-energy obtained from the numerical solution of the renormaliza-
tion-group equations [28, 29]. As pointed out in Ref. 30, for the case

are the same as those in the parametric crossover model employed earlier
by Kiselev et al. [26, 27]. The crossover function R(q),

where b2 is a universal linear-model parameter, and k, d1, a, and c, are
system-dependent coefficients. The universal scaled functions

the crossover function [Eq. (7)] into a six-term Landau expansion [10,
21] has enabled this model to represent the thermodynamic properties of
pure fluids over a range bounded by x > 2.2, which for the critical isochore
approximately corresponds to a temperature range T C < T < 1 . 2 T C . With
the empirically improved crossover function introduced by Jin et al. [22,
23], the range of the six-term Landau crossover model can be extended up
to temperatures T<1.6TC. However, even with the empirically improved
crossover function, the six-term Landau crossover model is rather com-
plicated. The current parametric crossover model is generally simpler in the
sense that few iterative routines are required in its practical implementation,
and it has been developed to cover a wider range of the state variables.

2.2. Parametric Crossover Model

A phenomenological procedure for dealing with the crossover
behavior of the Heimholtz free energy density has been proposed by
Kiselev et al. [24-27]. In this approach, the crossover expression for the
critical part of the Heimholtz free energy can be represented in parametric
form [27],
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For large values of the variable q at r » Gi, the crossover function R(q)
modifies each term in Eq. (10) so they all become analytic, and Eq. (10) is
transformed into the renormalized Landau expansion with additional
asymmetric terms proportional to T Arj3, r2 Ar, and n5 as discussed above.
Thus, the parametric crossover model given by Eqs. (10)-(12) is physically
equivalent to the six-term crossover model [10, 21 ] and the effectiveness of
either crossover model is determined largely by the choice of the crossover
function. Our parametric crossover model is specified by Eqs. (10)-(14)
and contains the following universal constants: the critical exponents a, ft,
Ai, and 3t and the linear-model parameter b2. The values of all universal
constants are listed in Table I, and the universal scaled functions V i ( 0 ) are
given in Table II.

where f t ( A p / | r | f t ) are universal scaled functions, and k, a, and ci are critical
amplitudes. The next two asymmetric terms in Eq. (10) (i = 3 and i = 4) are
equivalent to a "mixing" of the thermodynamic variables [15], and the last
term in Eq. (10) (i = 5) corresponds to the additional asymmetric term
oc Arf in the effective Hamiltonian of the system [3, 20]

As demonstrated in previous work [26, 30], the crossover function Y
in the renormalized Landau expansion [Eq. (4)] can be defined through
the crossover function R(q) as

With this value of the exponent J0, the crossover equation [Eq. (10)]
reproduces the square-root corrections to the isochoric specific heat arising
in the mean-field regime at q y> 1 (Gi« |T| « 1) from an additional gradient
term in the Landau expansion for the effective Hamiltonian of the system
[1].

The first three terms on the right-hand side of Eq. (10) correspond to
the asymptotic (i = 0) and first and second correction terms (i= 1, 2) in the
Wegner expansion for three-dimensional Ising-like systems [17, 32]:

q0 = 0 and A0 = A1, the crossover function R(q) as given by Eq. (14) coin-
cides exactly with the crossover function Y 1 / A 1 (q ) obtained recently by
Belyakov et al. [31] in the first order e-expansion. However, the form of
the crossover equations obtained in Ref. 31 differs from Eqs. (10)-(12);
therefore, we will use in Eq. (14) the values [27]
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Table II. Universal Scaled Functions

y 0 ( 0 ) = ( 1 / 2 b 4 ) [ 2 B ( b 2 - 1 )/(2 - a) + 2B(2y - 1 )( 1 - b 2 0 2 ) / ( y( 1 - a)) + (2/i - 1 )( 1 - b202)
V 1 ( 0 ) = [ 1/(2b2( 1 - a + z1, ) ) ] [ ( y + A1 )/(2 - a + A1 ) - ( 1 - 2b) b 2 0 2 ]
V 2 ( 0 ) = [1 / (2b 2 (1 -a + z ) 2 ) ) ] [ (y + z(2) / (2-a + A 2 ) - ( 1 - 2 / l ) b 2 0 2 ]
<P3(0) = 0 - (2/3)(e - /I) b203 + e1( 1 - 2b) />405/(5 - 2c)
V4(0) = ( 1/3) b203 + e2( 1 - 2/0 h 4 0 5 / ( 5 - 2e)
< F 5 ( 0 ) = (1 /3 ) /)203 + e4( 1 - 2/( ) A405/( 5 - 2e3 )

3. CROSSOVER FREE ENERGY FOR BINARY MIXTURES

In accordance with the principle of critical-point universality with
appropriately chosen thermodynamic variables, also called isomorphic
variables, the thermodynamic potential of a binary mixture has the same
form as the thermodynamic potential of a one-component fluid [19,
33-35]. In the present paper we use the thermodynamic variables adopted
by Kiselev and co-workers [27, 36-38]. The isomorphic free-energy density
of a binary mixture is given by

where fi=/i2~u1 is the difference between the chemical potentials u1 and
u2 of the mixture components, and x = N2 / ( N 1 + N 2 ) is the mole fraction
of the second component in the mixture. The isomorphic variable x is
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Table I. Universal Constants

a = 0.110
ft = 0.325
j' = 2 - a - 2 / f = 1.24

b2 = (y-2b)/y( 1-2b) = 1.359
A1= A1=0.51
A2 = A2 = 2J1 = 1.02
J3 = J4 = y + B- 1 =0.565
A 5 = 1 . 1 9

A3 = A4 = A3- 1/2 = 0.065
A5 = A5- 1/2 = 0.69

e = 2y + 3B-1
e 1= ( 5 - 2 e - ) ( e - A ) ( 3 - 2 e ) / 3 ( 5 B - c )
e2 = (5-2e)(e-3B)/3(5B-e)
e3 = 2 - a - z 5

e4 = (5-2e3)(e3-3B)/3(5B-e3)



In Eqs. (21 )-(23), all system-dependent parameters as well as the critical
parameters Tc(x), pc(x), and Pc(x) are analytic functions of the isomorphic
variable x. For these functions, we use the same expressions as Kiselev et
al. [27, 38, 40]

(where R is the molar gas constant) relates the mole fraction x to the
isomorphic variable x. At fixed x, the isomorphic free energy pA will be the
same function of T and p as the Helmholtz free-energy density of a one-
component fluid. Based on the crossover equation of state for a pure fluid
[Eqs. (10)-(14)], the isomorphic free-energy density of a binary mixture is

The thermodynamic equation,

related to the field variable £, first introduced by Leung and Griffiths [39],
by the relation,
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In the context of the law of corresponding states, the mixing coef-
ficients k(1) in Eqs. (30) and ( 3 1 ) are universal constants for all binary
mixtures of simple fluids [27, 40]. For mixtures with /)ZC>0.06, one needs
to use an extended version of the law of corresponding states with addi-
tional terms quadratic in AZc(x) [40]. However, since for the D2O + H2O
mixture max{JZc) <K0.06, we use expressions linear in AZc(x). In the
present paper, for the mixing coefficients k(1), we adopt the same values
employed earlier for methane + ethane and ethane +n-butane mixtures

and all other coefficients are given by

is the difference between the actual critical compressibility factor of a mix-
ture Zc(Jc) = Pc(x)/Rpc(x) Tc(x) and its "ideal" part Zcid(x) = Zc0( 1 - x) +
Zclx. The dimensionless coefficients k, g, and d1 are written in the form

The critical-line condition implies that the zero of the chemical potential of
a binary mixture can be chosen so that the isomorphic variable x = x along
the entire critical line, including the one-component limits.

To specify the crossover equation for A(T, p, x) of a binary mixture,
we also need the system-dependent parameters 5,(x), k(x), a(x), c,-(x),
g(x), m,(Jc), and A , ( x ) as functions of the isomorphic variable x. To repre-
sent all these system-dependent parameters in Eqs. (21)-(23), represented
as k , ( x ) , as functions of .v, we use an isomorphic generalization of the law
of corresponding states [27, 40]. The isomorphic generalization of the
law of corresponding states assumes that all system-dependent parameters
depend on x only through the excess critical compressibility factor A Z c ( x ] ,
where

where subscripts cO and cl correspond to the first and second components
of the mixture, respectively. In addition to Eqs. (24)-(26), we also adopt a
critical-line condition of the form [27, 38, 40],
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4. CROSSOVER FREE ENERGY FOR PURE D2O

In order to use the parametric crossover model defined by Eqs.
(21)-(23) for pure D2O (x = x = 0), it is necessary to have the critical
parameters Tc, pc, and Pc. For D2O we adopted the values recommended
by Levelt Sengers et al. [43], as accepted by the International Association
for the Properties of Water and Steam, but with the critical temperature
converted to ITS-90:

We then fit experimental PVT data in the range of temperatures and den-
sities bounded by

[27], The values of the coefficients are listed in Table III. The relevant
thermodynaraic derivatives of the crossover free energy are summarized in
the Appendix.

Table III. Mixture Constants

D2O H2O k(1)

Critical amplitudes

k
d1,
a

c1

c2

C3

c4

g

1.47247
-7.85398 x 10-1

2.32676 x 10
-2.75293

9.36745
-l14I104x 10

9.23419

1.41380
-7.13319x 10-1

2.25385 x 10
-6.83712

1.33215 x 10
-1.16219x 10

7.83568

Crossover parameter

1.55062 x 1 0 - 2 1.80152x 1 0 - 5

-3.4826
-6.7567 x 10-1

-2.3130 x 10
- 3.3449 x 10

0
-1.1514

2.1111 x 10

9.8900

Background coefficients

A1

A2

A3

Jm1 =m11 -M10

m1

m2

m3

m4

-7.94392
1.88718 x 10
2.18830
0

-2.41636 x 10
-1.31765x 10

1.46961 x 10
-1.32875x10

-7.81074
1.81122x 10
2.72022
0

- 2.07384 x 10
-1.14168x 10

6.23749
-6.41886

9.0968
- 3.3379 x 10

0
3.4252

- 2.6928 x 102

1.7328x 10
-5.9960

0



Fig. 1. Percentage deviations of the experimental pressures obtained by Rivkin
and Akhundov [45, 46] for D^O from values calculated with the crossover equa-
tion of state.
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in order to obtain the fluid-specific critical amplitudes (the rescaled asymp-
totic critical amplitude k, the rectilinear diameter amplitude d1 of the
coexistence curve, the amplitude a of the asymptotic term, the ampli-
tudes c, (i= 1,..., 5) of the nonasymptotic terms, and the inverse rescaled
Ginzburg number g), and background coefficients Ai. We also used in the
fit two vapor pressure data from Ref. 44 at temperatures of approximately
0.97c and 0.857c. The PVT data were taken from Refs. 45-47. The experi-
mental PVT data of Rivkin and Akhundov [45, 46] refer to a sample with
0.13 mol% H2O and the experimental data of Tsederberg et al. [47] to a
sample with 0.20 mol% H2O. Therefore, we applied a small impurity cor-
rection to the data as described by Kamgar-Parsi et al. [48]. Figure 1 shows
the percentage deviations of the experimental pressures from the calculated
values as a function of temperature and density. Inside the region specified
by Eq. (33), the parametric crossover model represents the experimental
PVTdaVd with an average absolute deviation (AAD) of about 0.09%. The
pressure deviations correspond approximately to those found by Kamgar-
Parsi et al. [48]. The coefficients resulting from the fit are given in Table III.
The coefficient g for D2O in Table III is much smaller then 1. Therefore,
heavy water, like pure H2O, is essentially a nonclassical "scaling" system,
and a crossover to mean-field classical behavior in the region given by
Eq. (33) is never observed.



which can be chosen arbitrarily. In this work we set m0 = 0 and found the
coefficient m1 from Eqs. (34), where for the critical enthalpy Hc we adopted
the same value as Kamgar-Parsi et al. [48],

Figure 2 shows the calculated difference between the vapor pressure of
D2O and that of ordinary water [53] as a function of temperature, along
with data for this quantity from Liu and Lindsay [44]. The agreement for
this sensitive quantity is excellent down to perhaps 520 K; at lower tem-
peratures the crossover model exceeds its range of validity (for both pure
components), and its accuracy is diminished. In particular, the model gives
equality of the vapor pressures (such a crossing of vapor-pressure curves
is called a Bancroft point) at 511 K, whereas the experimental value is
approximately 494 K.

The coefficients m, are found from caloric data. m0 and m1 determine
the values of the entropy and the enthalpy at the critical point [30]:

Fig. 2. The vapor pressure difference PD2O — PH2O as a function of tem-
perature. The symbols indicate experimental data of Liu and Lindsay
[44], and the curves represent values calculated with the crossover
model.
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Fig. 3. Percentage deviations of the experimental isochoric specific heats
obtained by Amirkhanov et al. [49] (triangles) and by Mursalov [50] (circles)
for D2O from values calculated with the crossover equation of state.
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The coefficients mt for i ^ 2 determine the background contributions to the
isochoric specific heat and can be determined from fitting either heat
capacity or sound speed data. Unfortunately, there are no sound-speed
data in the critical region for D2O. Therefore, we found the coefficients m2,
m3, and m4 from a fit of the crossover model to the isochoric specific heat
data obtained by Amirkhanov et al. [49] at two near-critical isochores,
and experimental data of Mursalov [50] at other isochores. The resulting
values for m, are given in Table III.

Experimental isochoric heat capacity data reported by Mursalov [50]
for heavy water cover a temperature range from 294 to 747 K and densities
between 52.466 and 1104.972 kg-m" 3 . Measurements were made for 23
isochores in the one- and two-phase regions including eight near-critical
isochores: p = 219.298, 261.097, 303.030, 338.409, 344.828, 370.370, 400.000,
and 492.611 kg -m~ 3 . Measurements were made using a high-temperature
and high-pressure constant-volume adiabatic calorimeter. The temperature
was measured by a platinum resistance thermometer (PTS-10) which was
calibrated within an accuracy of ±1 mK at VNIFTRI (Moscow) on the
IPTS-68 temperature scale; therefore, we converted Mursalov's C,. data to
the ITS-90 temperature scale.

The calorimeter was a multilayer system and consisted of an inner
thin-walled vessel with 0.5 mm thick and 60 mm in diameter and an outer



Fig. 4. The isochoric specific heat data obtained by Amirkhanov et al. [49] (triangles)
and by Mursalov [50] (circles) for D2O at isochores p = 219.298, 261.097, 303.030, and
338.409 kg . m-3 as a function of temperature compared with predictions of the crossover
equation of state (curves). The empty symbols correspond to the experimental temperatures
[49, 50] on ITS-90, and the filled symbols indicate values with the temperature scale lowered
by 0.45 K.

spherical shell 7 mm thick. The inner volume of the calorimeter is 100.58 +
0.05 cm3. The results of C,, measurements by this method depend on the
values of the temperature-dependent empty-calorimeter heat capacity C0.
C0 was determined experimentally using water and nitrobenzene as
standard fluids at temperatures up to 423.15 K. At high temperatures
(T>423.15 K), the values of C0 were measured using CP data of air at
atmospheric pressure. The heat capacities at atmospheric pressure for these
fluids are known with an accuracy of ±0.2 to 0.3%. Therefore, the values
of the empty calorimeter heat capacity C0 were determined with an uncer-
tainty of +0.3% at temperatures up to 423.15 K, and 2 to 2.5% at high
temperatures ( T > 4 7 0 K). The average value of C,, for this calorimeter is
about 44.0 J . K-1 , which was not more than 15 to 20% of the total heat
capacity of the system calorimeter + heavy water. With this value of C0,
Mursalov [50] estimated the experimental uncertainty of the isochoric
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Fig. 5. The isochoric specific heat data obtained by Amirkhanov et al. [49] (triangles)
and by Mursalov [50] (circles) for D2O at isochores /> = 344.828, 370.370, 400.000, and
492.610 kg- m~3 as a function of temperature compared with predictions of the crossover
equation of state (curves). The open symbols correspond to the experimental temperatures
[49, 50] on ITS-90, and the filled symbols indicate values with the temperature scale lowered
by 0.45 K.
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specific heat to be 2% far from the critical point, and 3.5 to 4.5% in the
critical region.

Figure 3 shows the percentage deviations of the experimental isochoric
specific heats from the calculated values as a function of temperature and
density in the one-phase region. Except for the near-critical isotherms at
0.98rc< TX 1.02Tc, where deviations approach 20%, the parametric cross-
over model represents the experimental Cr data with an AAD of about 2%
inside the region specified by Eq. (33), corresponding approximately to the
experimental uncertainty in this region. In Figs. 4 and 5 we show a com-
parison of calculated and experimental isochoric specific heats along the
individual isochores. For isochores p = 219.298, 261.097, 303.030, 338.409,
370.370, 400.000, and 492.611 k g - m ~ 3 in the temperature range from the
saturation value Ts to Ts + 2 K or TS<T< 645 K, the experimental C(.
data are represented by the crossover equation of state to within +15%.
At isochores p = 370.370 and 338.409 k g - m ~ 3 , near the phase transition.



Fig. 6. The isochoric specific heat data obtained by Mursalov [50] for
D2O at the coexistence curve as a function of temperature compared with
predictions of the crossover equation of state (curves). The open symbols
correspond to the experimental temperatures [50] on ITS-90, and the filled
symbols indicate values with the temperature scale lowered by 0.45 K.

all data exhibit systematically higher deviations, while for the isochores
p = 219.298, 261.097, and 492.611 k g - m ~ - \ systematically lower deviations
are observed. For all isochores, the saturation temperatures Tx(p) show
systematic deviations of about AT =0.455 K. The value of the critical tem-
perature obtained by Mursalov [50] is also 0.45 K higher than Tc as given
in Eq. (32). These temperature deviations could be a consequence of
incorrect calibration of the platinum resistance thermometer (PTS-10). The
thermometer resistances at 0 and 100°C reported by Mursalov [50] were
R0= 10.123 Q and R100/R0= 1.3924, while the standard value is
R1 0 0 /R0 = 1.3920. Therefore, all experimental temperatures in the one- and
two-phase regions were shifted by 0.45 K. With the shifted temperatures,
agreement within +2% between experimental and calculated values of C,
is observed for isochores p = 170.387, 303.030, and 400.000 kg . m-3 in the
entire temperature range from Tx(p) up to 739.623 K. Only 5 points of 90
show deviations of about +10%. Large systematic negative deviations of
about 10 to 15% are also observed for most isochores in the two-phase
region near the phase transition temperatures. Only for two isochores,
p = 219.298 and 303.030 k g - m ~ - \ in the immediate vicinity of the phase
transition temperatures, do the deviations increase to 20 to 25%.
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Fig. 7. The saturation temperatures Ts obtained by Mursalov [50] for D2O at
the coexistence curve as a function of density compared with predictions of the
crossover equation of state (curve). The open symbols correspond to the experi-
mental temperatures [50] on ITS-90, and the filled symbols indicate values with
the temperature scale lowered by 0.45 K.

For example, at T=643K and AT=0.45 K, the value of AC,, is about
8.65% for the isochore p = 344.828 k g - m ~ 3 , and about 16.4% at
p — 370.370 kg .m-3. At temperatures between 640 and 643 K, the values
of Ap vary between 2 and 9%, while at temperatures T5=643.5 K, values
of Ap increase up to 12.35% and more. The corrections due to the tem-
perature shift are negligible at densities and temperatures far from the
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Figure 6 gives a comparison of the experimental data with the calcu-
lated values of the isochoric specific heats as functions of temperature along
the coexistence curve in the one- and two-phase regions. All experimental
C,, data in the two-phase region are systematically lower than calculated
values. Since the derivatives dCu/dT s and dp/dT, are large in the critical
region, even small deviations in T, result in large deviations in C,. and
saturated densities in the critical region. The corrections in C,, and satu-
rated density due to the temperature shift AT= Tx(shift) — Ts(exp) can be
estimated from the simplified equations,



Fig. 8. The isobaric specific heat data of R i v k i n and Egorov [51. 52]
(symbols) for D2O along isobars as a function of temperature compared
with predictions of the crossover equation of state (curves) .
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critical point. For example, for isochores p = 344.828 and 370.370 kg . m-3

at 640 K, this correction in C,. is about 0.8 to 1.23%. As shown in Fig. 6,
the original C,. data in the two-phase region deviate by about 15 to 20%,
while the corrected values agree with the crossover EOS within 5 to 6%.
The original saturation temperatures extracted from the experimental C,
data of Mursalov [50] and those shifted by 0.45 K as a function of density
are shown in Fig. 7. One can see that, with the temperature shift, the
experimental data are in good agreement with the calculated values of the
saturated density.

A comparison of the predictions of the crossover model with the
experimental CP data of Rivkin and Egorov [51, 52] is shown in Figs. 8
and 9. At pressures P = 22.065, 23.536, and 24.516 MPa, a small systematic
deviation from the experimental data, connected with a difference of the
actual locations of the experimental and calculated Cp maxima, is observed
in Fig. 9 (see inset). Kamgar-Parsi et al. [48] found the same small mis-
match between the densities calculated for the experimental data points
and those corresponding to the predicted Cp values. They found that this
mismatch disappears if the temperatures associated with the experimental
CP data of Rivkin and Egorov [51, 52] are shifted by 0.11 K. Since we,
unlike Kamgar-Parsi et al. [48], did not use the experimental C/, data in



the fitting procedure, we represent the experimental data of Rivkin and
Egorov [51, 52] with the original temperatures, but converted to 1TS-90.

5. CROSSOVER FREE ENERGY MODEL FOR THE
D2O + H2O MIXTURE

Once the pure-fluid equations of state for the components of a binary
mixture are known, only the critical locus of the binary mixture is needed
in order to predict the phase behavior of the mixture. It is not necessary
to fit additional experimental data [27, 40]. For pure D2O, we used
parameters found in the previous section, while for pure H2O we adopted
the parameters obtained recently by Kiselev and Friend [53]. These
parameters are listed in Table III.

Unfortunately, we do not know the critical locus for the D2O + H2O
mixture. Only a few data points [54] on the Tc — x curve are available,
and this is not sufficient information to determine all of the adjustable
parameters required in Eqs. (24)-(26). Experimental Tc — x data obtained
by Marshall and Simonson [54] indicate that the critical temperature of
the D2O + H2O mixture may be described with a linear interpolation

Fig. 9. The isobaric specific heat data obtained by Rivkin and Egorov
[51, 52] (symbols) for D2O at isobars as a function of density compared
with predictions of the crossover equation of state (curves).
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Fig. 10. Excess enthalpy Hm for D2O + H2O mixtures at temperatures of
673.76 and 624.48 K at 36.2 M Pa as a function of composition. Curve
corresponds to the crossover model, and symbols indicate the experimental
data of Simonson [56].

Kiselev et al. [55] recently proposed a constructive approach for the incor-
poration of chemical reaction in the crossover model for the Helmholtz
free energy. In this approach, a chemical reaction can be incorporated in
Eqs. (21)-(23) by considering the coefficients k, as functions of the extent
of the reaction. As a consequence, with chemical equilibrium all coefficients
in Eqs. (21)-(23) become more complicated functions of the field variable
x than in the nonreacting systems. Therefore, in the present paper we
renormalized the mixing coefficients Am1 and k(1) in Eq. (31) for the

between the two pure-fluid critical temperatures. Since there was no infor-
mation about the critical pressure and the critical density for the mixture,
we adopted the same linear interpolations for the Pc — x and pc — x curves.
Thus, we set all mixing coefficients Ti,pi, and P,- in Eqs. (24)-(26) to zero.

The law of corresponding states crossover model was successfully
applied recently by Kiselev and co-workers to VLB surfaces and one-phase
supercritical PTp data [40-42] and to excess enthalpies and enthalpy
increments of a number of binary mixtures [30]. The D2O + H2O mixture
differs from the mixtures considered previously by the presence of the
isotope-exchange equilibrium,
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Fig. 11. Vapor-liquid equilibrium temperatures relative to that of pure
H2O for D2O + H2O mixtures as a function of composition. The symbols
indicate bubble-point data obtained by Zieborak [57], and the curves repre-
sent values calculated with the crossover model.

parameter m,, which determines the critical locus of the enthalpy Hc(x) in
binary mixtures [see Eq. (34)]. For this purpose, the experimental excess
enthalpies of D2O + H2O mixtures measured by Simonson [56] were
used. The renormalized values of the coefficients Am1 and k(1) are presented
in Table III .

Figure 10 compares the excess enthalpies calculated from the crossover
model with values obtained by Simonson [56] at two temperatures at a
pressure of 36.2 MPa. Agreement is good, even though at the lower of the
two temperatures, the experimental densities are about twice the critical
density; the crossover model is not expected to work as well so far from the
critical density.

It would be of interest to evaluate the performance of the model for
vapor-liquid equilibrium (VLB) calculations in the mixture. Unfortunately,
we know of no experimental VLB data at temperatures high enough for
our crossover model to be quantitatively valid. The only data at
moderately high temperatures are those of Zieborak [57], whose measure-
ments extend to the region where the mixture exhibits an azeotrope (due
to the crossing of the vapor-pressure curves at the Bancroft point) near
494 K.
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In Fig. 11, we plot the difference in boiling temperature between the
mixture and pure H2O. In order to compare with Zieborak's data, we have
plotted them at the pressure where he found the H2O and D2O vapor
pressures to be equal, and the results of the crossover model are plotted at
the (slightly different) pressure where the model predicts the Bancroft
point. The model results are qualitatively correct, in that they indicate a
nearly symmetric, maximum-boiling azeotrope. However, the results dis-
agree quantitatively, as the model predicts far more nonideality than the
very weak azeotrope indicated by the data. Another indication of the quan-
titative disagreement is that the model predicts azeotropy for an interval of
about 40 K above where the vapor pressure curves cross, whereas the data
of Zieborak [57] indicate the azeotrope disappears within about 1 K of
this point.

6. CONCLUSIONS

We have developed a parametric crossover model, valid in the
extended critical region, for heavy water and its mixtures with ordinary
water. The results for caloric, PVT, and phase-equilibrium properties of
pure D2O are in good agreement with experimental data.

For mixtures of heavy water with ordinary water, there are few data
in the region of validity of the model. The model is able to reproduce
excess enthalpy data at high temperatures. For phase equilibria, while it is
qualitatively correct in predicting a weak maximum-boiling azeotrope, the
predicted magnitude of the azeotrope is much too large.

This quantitative disagreement may be because the azeotrope is far
enough away from the critical locus to be outside the range of validity of
the model. Better results at these conditions might be obtained by applying
a theory that crosses over to an equation of state valid far from the critical
point, such as the theory recently developed by Kiselev and Friend [58].
Another reason for the disagreement could be that the isotope exchange
reaction was only implicitly considered by a variation in mixing parameters
rather than being included explicitly. The enthalpy of this reaction is
probably the dominant effect in the excess enthalpy of the mixture [56].
Because of the isotope-exchange reaction, this system is actually a ternary
mixture (with approximately 50% HDO for a 50-50 mixture), and
qualitative features of the equation of state are affected by the extent of the
reaction. An approach for incorporating a chemical reaction in the cross-
over equation of state has been developed recently by Kiselev and co-
workers [55]. If the reaction were incorporated more rigorously, the excess
enthalpy would be obtained more naturally, and the VLB predictions
might also be improved. However, in order to develop a more complete
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with

Isochoric specific heat capacity Cv x,

and background contribution,

where the critical part,

and accurate theoretical model for this mixture, more experimental data at
high temperatures are needed.

APPENDIX: RELEVANT THERMODYNAMIC QUANTITIES

Pressure P and its derivatives,
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[here AM0 = M0 — (T/T c 0 ) ln( 1 — Jc)], which provides a relationship between
concentration x and the isomorphic variable x at fixed temperature T and
density p.
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